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Abstract: Quantitative analysis of the peripapillary retinal layers and capillary plexuses from 
optical coherence tomography (OCT) and OCT angiography images depend on two 
segmentation tasks – delineating the boundary of the optic disc and delineating the boundaries 
between retinal layers. Here, we present a method combining a neural network and graph 
search to perform these two tasks. A comparison of this novel method’s segmentation of the 
disc boundary showed good agreement with the ground truth, achieving an overall Dice 
similarity coefficient of 0.91 ± 0.04 in healthy and glaucomatous eyes. The absolute error of 
retinal layer boundaries segmentation in the same cases was 4.10 ± 1.25 µm. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Optical coherence tomography (OCT) provides noninvasive, structural images of eye fundus 
tissue based on interferometric analysis of low-coherence light [1]. By considering blood flow 
induced temporal variation in the signal garnered from OCT, vasculature can be distinguished 
from static tissue. There are many versions of this technique; collectively they are termed OCT 
angiography (OCTA) [2–8]. Measurement of retinal layer thickness from structural OCT and 
analysis of capillary plexuses from OCTA can both help clinical diagnosis and early detection 
of glaucoma, which is the leading cause of irreversible blindness globally [9–13]. But the 
clinical utility of such measurements requires accuracy and precision, both of which depend 
critically on the segmentation of both the optic disc boundary and peripapillary retinal 
boundaries. Segmentation of these anatomical regions is, then, a critically important task. 

Since manual segmentation is time-consuming, several methods to segment the optic disc 
and peripapillary retinal boundaries have been proposed [14–22]. For peripapillary retinal 
boundaries segmentation, graph search algorithms based on intensity differences between 
anatomical slabs from structural OCT have been used frequently and show good results. 
Antony et al. proposed a 3D graph search method for the segmentation of both the optic disc 
boundary and the peripapillary retinal boundaries [16]. Zang et al. proposed a method which 
detected the optic disc boundary and segmented peripapillary retinal boundaries separately 
using a dynamic-programming based graph search algorithm [20]. Gao et al. proposed a 
method which combined the active appearance model and graph search to segment the 
peripapillary retinal boundaries [21]. Yu et al. proposed a shared-hole graph search method 
which first segments the optic disc boundary and then segments the peripapillary retinal 
boundaries [22]. However, speckle noise and vessel shadows both seriously detrimentally 
impact segmentation accuracy based just on graph search. 

Nowadays, deep learning plays an important role in medical image processing and several 
learning-based methods exist for segmentation of OCT data [23–28]. Devalla et al. proposed a 
dilated-residual U-Net to segment optic nerve head tissues such as the lamina cribrosa, choroid, 
sclera and so on [25]. But the peripapillary retinal boundaries were not segmented in this study. 
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Kugelman et al. proposed a retinal boundary segmentation method for macular OCT based on a 
combination of recurrent neural networks and graph search [26]. However, the anatomical 
disruption caused by the optic disc makes peripapillary retinal boundaries segmentation much 
more challenging than the macular region. Networks trained on macular OCT scans therefore 
may not generalize well to the peripapillary region. 

In this study, we propose an automated segmentation method for optic disc boundary 
detection and peripapillary retina layer segmentation. We designed two separate neural 
networks and trained one each to segment the optic disc boundary and peripapillary retinal 
layers. The final peripapillary retinal boundaries were calculated based on the prediction and 
gradient maps using a multi-weights graph search algorithm. 

2. Methods 

2.1 Patient recruitment and data acquisition 

In this study, 46 healthy and 63 participants with glaucoma were recruited and tested at the 
Casey Eye Institute, Oregon Health & Science University. The diagnoses of all the participants 
were made by an expert clinical examination. The participants were enrolled after informed 
consent in accordance with an Institutional Review Board approved protocol. The study was 
conducted in compliance with the Declaration of Helsinki. 

The peripapillary retinal area was scanned using a commercial 70-kHz spectral-domain 
OCT system (Avanti RTVue-XR, Optovue Inc) with 840-nm central wavelength. The scan 
regions were 4.5 × 4.5 mm and 1.6 mm in depth (304 × 304 × 640 pixels) centered on the optic 
disc. Two repeated B-frames were captured at each line-scan location. The blood flow of each 
line-scan location was detected using the split-spectrum amplitude-decorrelation angiography 
(SSADA) algorithm based on the speckle variation between two repeated B-frames [2,29]. The 
OCT structural images were obtained by averaging two repeated B-frames. For each data set, 
two volumetric raster scans (one x-fast scan and one y-fast scan) were registered and merged 
through an orthogonal registration algorithm to reduce motion artifacts [30]. 

In each OCT data set, the following layers or boundaries are anatomically important: inner 
limiting membrane (ILM), nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform 
layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), 
ellipsoid zone (EZ), retinal pigment epithelium (RPE), and Bruch’s membrane (BM). In this 
study, seven boundaries (Vitreous/ILM, NFL/GCL, IPL/INL, INL/OPL, OPL/ONL, ONL/EZ, 
and RPE/BM) were manually segmented by a human grader. 

2.2 Neural network designing 

The neural network used in this study was designed based on the architecture of the classic 
U-Net [31,32] (Fig. 1). Three max-pooling and (de)convolution layers were separately used in 
the down-sampling and up-sampling towers. Because each peripapillary retinal layer cannot be 
identified based just on the upper and lower boundaries, the global position in the whole retina 
is also an important feature. In order to capture both the relative and absolute location of each 
peripapillary retinal layer, a 3 × 3 normal and atrous-convolution layer [33,34] were cascaded 
together in each layer of the down-sampling and up-sampling towers. In addition, a global 
block was also designed to capture the local and global information before the final 
classification layer. The batch normalization [35] and exponential linear unit (ELU) function 
[36] were used after each convolution layer (except the output layer) to improve the stability of 
the final classification. 

The Dice similarity coefficient (DSC) for each channel of the output map was used in the 
loss function: 
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Table 1. Segmentation accuracy of our method 

Boundaries Healthy (Mean ± Std; µm) Glaucoma (Mean ± Std; µm) 
Vitreous/ILM 2.83 ± 1.12 3.25 ± 0.92 
NFL/GCL 6.42 ± 0.36 6.64 ± 0.27 
IPL/INL 5.59 ± 0.34 5.70 ± 0.23 
INL/OPL 4.93 ± 0.66 4.97 ± 0.47 
OPL/ONL 4.59 ± 0.90 5.37 ± 0.32 
ONL/EZ 3.90 ± 0.83 4.22 ± 0.67 
EZ/RPE 3.31 ± 0.77 3.74 ± 0.82 
RPE/BM 3.52 ± 1.00 3.46 ± 0.94 
Overall 4.09 ± 1.34 4.11 ± 1.16 

 
As another test of performance for the algorithm presented here, we also compared our 

results to those obtained with our previous method, which was based exclusively on the graph 
search algorithm [20]. The comparisons of the segmentation accuracy of peripapillary retinal 
boundaries is shown in Table 2. 

Table 2. Comparison of the peripapillary retinal boundaries segmentation 

 Healthy Glaucoma 

 NFL/GCL All layers NFL/GCL All layers 

Only graph search 9.34 ± 1.35 µm 4.78 ± 3.51 µm 14.26 ± 3.73 µm 11.45 ± 7.84 µm 
With neural 
network 

6.42 ± 0.36 µm 4.09 ± 1.34 µm 6.64 ± 0.27 µm 4.11 ± 1.16 µm 

P-Value 0.006 0.09 0.004 0.002 

 
Through Table 2, it is clear that the segmentation accuracy and stability were both improved 

after combining the neural network with the classic graph search. 

3.3 Neural network analysis 

Inside the neural network, the addition of the atrous-convolution layer in each atrous-block and 
the global block greatly improved the performance of the neural networks. In order to further 
analyze the neural network design, we compared the validation accuracy (based on DSC) of the 
peripapillary retinal layers segmentation between the four architectures below: original U-Net, 
U-Net + global block, U-Net + cascaded atrous-block, and U-Net + global block + cascaded 
atrous-block (proposed) (Table 3). Clearly, adding the cascaded atrous-convolution layers in 
the down and up sampling towers and global block at the end of the network critically improved 
the convergence of the neural network. In addition, the validation accuracies of the healthy and 
glaucoma data based on the inputs using only one channel (the middle one) instead of the 5 
used in our algorithm were 84.11% and 83.53% respectively. These accuracies were about 2% 
lower than the accuracies shown in the last column of Table 3 which proved the five channels 
input design was effective. 

Table 3. Comparison of the validation accuracy between different architectures 

 Original U-Net 
U-Net + global 

block 
U-Net + cascaded 

atrous-block 
U-Net + global block + cascaded 

atrous-block (proposed) 
Healthy 23.14% 62.52% 81.79% 86.47% 

Glaucoma 21.87% 61.26% 79.92% 85.31% 

 
Figure 10 shows example feature maps learned by the network in the normal convolution 

layers of the global block. It is clear that in each map the network is learning different retinal 
layers, as each map highlights specific layers or combinations thereof. The result of each map 
then yields a complete segmentation. 
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